Q-polynomial distance-regular graphs with a1=0

نویسنده

  • Stefko Miklavic
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Triangle-free distance-regular graphs

Let Γ = (X, R) denote a distance-regular graph with distance function ∂ and diameter d ≥ 3. For 2 ≤ i ≤ d, by a parallelogram of length i, we mean a 4-tuple xyzu of vertices in X such that ∂(x, y) = ∂(z, u) = 1, ∂(x, u) = i, and ∂(x, z) = ∂(y, z) = ∂(y, u) = i − 1. Suppose the intersection number a1 = 0, a2 6= 0 in Γ. We prove the following (i)-(ii) are equivalent. (i) Γ is Q-polynomial and con...

متن کامل

Parallelogram-Free Distance-Regular Graphs

Let 1=(X, R) denote a distance-regular graph with distance function and diameter d 4. By a parallelogram of length i (2 i d ), we mean a 4-tuple xyzu of vertices in X such that (x, y)= (z, u)=1, (x, u)=i, and (x, z)= ( y, z)= ( y, u)=i&1. We prove the following theorem. Theorem. Let 1 denote a distanceregular graph with diameter d 4, and intersection numbers a1=0, a2 {0. Suppose 1 is Q-polynomi...

متن کامل

A characterization of Q-polynomial distance-regular graphs

We obtain the following characterization of Q-polynomial distance-regular graphs. Let Γ denote a distance-regular graph with diameter d ≥ 3. Let E denote a minimal idempotent of Γ which is not the trivial idempotent E0. Let {θ∗ i }i=0 denote the dual eigenvalue sequence for E. We show that E is Q-polynomial if and only if (i) the entry-wise product E ◦ E is a linear combination of E0, E, and at...

متن کامل

On Bipartite Q-Polynomial Distance-Regular Graphs with Diameter 9, 10, or 11

Let Γ denote a bipartite distance-regular graph with diameter D. In [J. S. Caughman, Bipartite Q-polynomial distance-regular graphs, Graphs Combin. 20 (2004), 47–57], Caughman showed that if D > 12, then Γ is Q-polynomial if and only if one of the following (i)-(iv) holds: (i) Γ is the ordinary 2D-cycle, (ii) Γ is the Hamming cube H(D, 2), (iii) Γ is the antipodal quotient of the Hamming cube H...

متن کامل

A ug 2 00 5 Almost - bipartite distance - regular graphs with the Q - polynomial property ∗

Let Γ denote a Q-polynomial distance-regular graph with diameter D ≥ 4. Assume that the intersection numbers of Γ satisfy ai = 0 for 0 ≤ i ≤ D − 1 and aD 6= 0. We show that Γ is a polygon, a folded cube, or an Odd graph.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2004